Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 27(5): 2323-2333, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34962889

RESUMO

Heart rate variability (HRV) has been used in assessing mental workload (MW) level. Compared with ECG, photoplethysmogram (PPG) provides convenient in assessing MW with wearable devices, which is more suitable for daily usage. However, PPG collected by smartwatches are prone to suffer from artifacts. Those signal corruptions cause invalid Inter-beat Intervals (IBI), making it challenging to evaluate the HRV feature. Hence, the PPG-based MW assessment system is difficult to obtain a sustainable and reliable assessment of MW. In this paper, we propose a pre- and post- processing technique, called outlier removal and uncertainty estimation, respectively, to reduce the negative influences of invalid IBIs. The proposed method helps to acquire accurate HRV features and evaluate the reliability of incoming IBIs, rejecting possibly misclassified data. We verified our approach in two open datasets, which are CLAS and MAUS. Experiment results show proposed method achieved higher accuracy (66.7% v.s. 74.2%) and lower variance (11.3% v.s. 10.8%) among users, which has comparable performance to an ECG-based MW system.


Assuntos
Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Fotopletismografia/métodos , Frequência Cardíaca/fisiologia , Eletrocardiografia/métodos
2.
IEEE J Biomed Health Inform ; 27(5): 2243-2254, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35981060

RESUMO

Compressed sensing (CS) has drawn much attention in electrocardiography (ECG) signal monitoring for its effectiveness in reducing the transmission power of wireless sensor systems. Compressed analysis (CA) is an improved methodology to further elevate the system's efficiency by directly performing classification on the compressed data at the back-end of the monitoring system. However, conventional CA lacks of considering the effect of noise, which is an essential issue in practical applications. In this work, we observe that noise causes an accuracy drop in the previous CA framework, thus discovering that different signal-to-noise ratios (SNRs) require different sizes of CA models. We propose a two-stage noise-level aware compressed analysis framework. First, we apply the singular value decomposition to estimate the noise level in the compressed domain by projecting the received signal into the null space of the compressed ECG signal. A transfer-learning-aided algorithm is proposed to reduce the long-training-time drawback. Second, we select the optimal CA model dynamically based on the estimated SNR. The CA model will use a predictive dictionary to extract features from the ECG signal, and then imposes a linear classifier for classification. A weight-sharing training mechanism is proposed to enable parameter sharing among the pre-trained models, thus significantly reducing storage overhead. Lastly, we validate our framework on the atrial fibrillation ECG signal detection on the NTUH and MIT-BIH datasets. We show improvement in the accuracy of 6.4% and 7.7% in the low SNR condition over the state-of-the-art CA framework.


Assuntos
Fibrilação Atrial , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos , Algoritmos , Fibrilação Atrial/diagnóstico , Monitorização Fisiológica
3.
IEEE J Biomed Health Inform ; 26(8): 3649-3660, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35767497

RESUMO

Mind-wandering (MW), which is usually defined as a lapse of attention has negative effects on our daily life. Therefore, detecting when MW occurs can prevent us from those negative outcomes resulting from MW. In this work, we first collected a multi-modal Sustained Attention to Response Task (MM-SART) database for MW detection. Eighty-two participants' data were collected in our dataset. For each participant, we collected measures of 32-channels electroencephalogram (EEG) signals, photoplethysmography (PPG) signals, galvanic skin response (GSR) signals, eye tracker signals, and several questionnaires for detailed analyses. Then, we propose an effective MW detection system based on the collected EEG signals. To explore the non-linear characteristics of the EEG signals, we utilize entropy-based features. The experimental results show that we can reach 0.712 AUC score by using the random forest (RF) classifier with the leave-one-subject-out cross-validation. Moreover, to lower the overall computational complexity of the MW detection system, we propose correlation importance feature elimination (CIFE) along with AUC-based channel selection. By using two most significant EEG channels, we can reduce the training time of the classifier by 44.16%. By applying CIFE on the feature set, we can further improve the AUC score to 0.725 but with only 14.6% of the selection time compared with the recursive feature elimination (RFE). Finally, we can apply the current work to educational scenarios nowadays, especially in remote learning systems.


Assuntos
Eletroencefalografia , Fotopletismografia , Bases de Dados Factuais , Eletroencefalografia/métodos , Entropia , Resposta Galvânica da Pele , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...